Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Precision agriculture (PA) has been defined as a “management strategy that gathers, processes and analyzes temporal, spatial and individual data and combines it with other information to support management decisions according to estimated variability for improved resource use efficiency, productivity, quality, profitability and sustainability of agricultural production.” This definition suggests that because PA should simultaneously increase food production and reduce the environmental footprint, the barriers to adoption of PA should be explored. These barriers include (1) the financial constraints associated with adopting decision support system (DSS); (2) the hesitancy of farmers to change from their trusted advisor to a computer program that often behaves as a black box; (3) questions about data ownership and privacy; and (4) the lack of a trained workforce to provide the necessary training to implement DSSs on individual farms. This paper also discusses the lessons learned from successful and unsuccessful efforts to implement DSSs, the importance of communication with end users during DSS development, and potential career opportunities that DSSs are creating in PA.more » « less
-
Abstract Artificial intelligence (AI) represents technologies with human‐like cognitive abilities to learn, perform, and make decisions. AI in precision agriculture (PA) enables farmers and farm managers to deploy highly targeted and precise farming practices based on site‐specific agroclimatic field measurements. The foundational and applied development of AI has matured considerably over the last 30 years. The time is now right to engage seriously with the ethics and responsible practice of AI for the well‐being of farmers and farm managers. In this paper, we identify and discuss both challenges and opportunities for improving farmers’ trust in those providing AI solutions for PA. We highlight that farmers’ trust can be moderated by how the benefits and risks of AI are perceived, shared, and distributed. We propose four recommendations for improving farmers’ trust. First, AI developers should improve model transparency and explainability. Second, clear responsibility and accountability should be assigned to AI decisions. Third, concerns about the fairness of AI need to be overcome to improve human‐machine partnerships in agriculture. Finally, regulation and voluntary compliance of data ownership, privacy, and security are needed, if AI systems are to become accepted and used by farmers.more » « less
-
Abstract Because the manual counting of soybean (Glycine max) plants, pods, and seeds/pods is unsuitable for soybean yield predictions, alternative methods are desired. Therefore, the objective was to determine if satellite remote sensing‐based artificial intelligence (AI) models could be used to predict soybean yield. In the study, multiple remote sensing‐based AI models were developed for soybean growth stage ranging from VE/VC (plant emergence) to R6/R7 (full seed to beginning maturity). The ability of the deep neural network (DNN), support vector machine (SVM), random forest (RF), least absolute shrinkage and selection operator (LASSO), and AdaBoost to predict soybean yield, based on blue, green, red, and near‐infrared reflectance data collected by the PlanetScope satellite at six growth stages, was determined. Remote sensing and soybean yield monitor data from three different fields in 2 years (2019 and 2021) were aggregated into 24,282 grid cells that had the dimensions of 10 m by 10 m. A comparison across models showed that the DNN outperformed the other models. Moreover, as crops matured from VE/VC to R4/R5, theR2value of the models increased from 0.26 to over 0.70. These findings indicate that remote sensing data collected at different growth stages can be combined for soybean yield predictions. Moreover, additional work needs to be conducted to assess the model's ability to predict soybean yield with vegetation indices (VIs) data for fields not used to train the model.more » « less
An official website of the United States government
